

Spécialité Doctorale Mathématiques Numériques, Calcul Intensif et Données

PPSC 2020 Fall

Programmation et Calcul Scientifique Parallèle Programming and Parallel Scientific Computing

Lecturers

Elie Hachem Aurélien Larcher Jonathan Viquerat

Schedule

30h Courses + Exercises

Week 45

02. November	I/E102
03. November	I/E102

Week 46

09. November	I/E102
10. November	I/E102
12. November	I/E102

Week 47

16. November	I/E102
17. November	I/E102
19. November	I/E102

Objectives

The course provides an introduction to C++ programming and algorithms with a focus on scientific computing using CimLib_CFD.

An overview of the C++ language is provided : specification, arithmetics, memory management, object-oriented design for component-based software, and advanced topics using templates.

Distributed and shared-memory parallel computing are then approached with exercises related to numerical linear algebra and solution methods for Partial Differential Equations.

Course content

- 1. C++ Programming
 - Environment (UNIX/Linux) and standards
 - Integer and Floating-point arithmetics
 - Object-Oriented concepts
 - Template and meta-programming
 - Advanced STL
- 2. Parallel scientific computing
 - Parallel computing architectures
 - Distributed programming models (MPI)
 - Shared memory models (OpenMP)
 - Performance for numerical linear algebra
 - Applications to finite element/finite difference methods

Evaluation

The course is evaluated based on the participation during programming labs and on the final project consisting of the implementation in C++ of a parallel solver for a given PDE :

Lab exercises	25%
Final project	75%